Fe-based heterogeneous catalysts for the Fischer-Tropsch reaction: Sonochemical synthesis and bench-scale experimental tests.

نویسندگان

  • Alberto Comazzi
  • Carlo Pirola
  • Mariangela Longhi
  • Claudia L M Bianchi
  • Kenneth S Suslick
چکیده

The sonochemical synthesis of nanostructured materials owes its origins to the extreme conditions created during acoustic cavitation, i.e., the formation of localized hot spots in the core of collapsing bubbles in a liquid irradiated with high intensity ultrasound (US). In particular, in the present work a sonochemical synthesis has been investigated for the production of three different iron-based samples supported on SiO2 and loaded with different metals and promoters (10 %wt of Fe; 30 %wt of Fe; 30 %wt of Fe, 2 %wt of K and 3.75 %wt of Cu) active in the Fischer-Tropsch (FT) process. Sonochemically synthesized heterogeneous catalysts were characterized by BET, XRPD, TPR, ICP, CHN, TEM, SEM and then tested in a fixed bed FT-bench-scale rig fed with a mixture of H2 and CO at a H2/CO molar ratio equal to 2, at activation temperatures of 350-400°C and reaction temperatures of 250-260°C. The experimental results showed that the ultrasonic samples are effective catalysts for the FT process. Notably, increasing the activation temperature increased CO conversion, while product selectivity did not diminish. All the sonochemically prepared samples presented in this work provided better catalytic results compared to the corresponding traditional FT impregnated catalysts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of calcium promoter on nano structure iron catalyst for Fischer–Tropsch synthesis

The Fischer-Tropsch synthesis (FTS) has been recognized as a heterogeneous surface-catalyzed polymerization process. During this process, CHx monomers formed via the hydrogenation of adsorbed CO on transition metals produce hydrocarbons and oxygenates with a broad range of chain lengths and functional groups. A series of Fe/Cu Fischer-Tropsch synthesis catalysts incorporated with a calcium prom...

متن کامل

Solvent Pre-treated Effects of Carbon Nanotube-supported Cobalt Catalysts on Activity and Selectivity of Fischer-Tropsch Synthesis

In this study, the effect of preparation technique of carbon nanotube (CNT)-supported cobalt catalysts on the activity and selectivity of Fischer-Tropsch synthesis (FTS) was studied. Different concentrations of acetic acid were used for the pretreatment of the catalyst support to modify the surface properties of CNT. This modification improved the reduction degree and dispersion of supported co...

متن کامل

A review of Fischer-Tropsch synthesis on the cobalt based catalysts

Fischer-Tropsch synthesis is a promising route for production of light olefins via CO hydrogenation over transition metals. Co is one of the most active metals for Fischer-Tropsch synthesis. Some different variables such as preparation parameters and operational factors can strongly affect the selectivity of Fischer-Tropsch synthesis toward the special products. In the case of preparat...

متن کامل

Prediction of Fe-Co-Mn/MgO Catalytic Activity in Fischer-Tropsch Synthesis Using Nu-support Vector Regression

Support vector regression (SVR) is a learning method based on the support vector machine (SVM) that can be used for curve fitting and function estimation. In this paper, the ability of the nu-SVR to predict the catalytic activity of the Fischer-Tropsch (FT) reaction is evaluated and the result is compared with two other prediction techniques including: multilayer perceptron (MLP) and subtractiv...

متن کامل

Kinetic Study of Fischer Tropsch Synthesis over co Precipitated Iron-Cerium Catalyst

The kinetic of Fischer-Tropsch synthesis over a co-precipitated Fe-Ce catalyst was investigated in a fixed bed micro reactor. Experimental conditions were varied as follow: reaction pressure 1-15bar, H¬¬¬2/CO feed ratio of 1-3 and space velocity of 3600-5400 h-1 at the temperature range of 270-310°C. 4 models according to the Langmuir-Hinshelwood-Hougen-Watson (LHHW) type rate equation were der...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ultrasonics sonochemistry

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2017